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This paper presents a finite difference method to solve two coupled, one-dimensional, non- 
linear, dispersive, and non-dissipative partial differential equations. They describe the generation 
and propagation of internal solitary wave trains along the interface of an inviscid two-layer 
fluid over a variable bottom topography. Since the existence of solitary waves requires a 
balance between dispersion’and nonlinear effects, great care has been taken to minimize the 
numerical dispersion which could otherwise overwhelm the mild analytic dispersion and 
thereby alter the shape and propagation characteristics of the solitary waves. Because the 
equations contain terms representing continuous forcing and arbitrary bottom topography, 
we can use the numerical algorithm presented here to study internal solitary waves in a 
natural fluid environment. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

In the past, many authors have studied numerically the interaction of two 
solitary waves of assumed forms. Others have studied the formation of solitary 
waves from an unbalanced initial condition for either the KdV or the MKdV 
equation. As an alternative, Chu et al. [3] studied numerically the so-called piston 
problem in a homogeneous fluid. High amplitude nonlinear waves were generated 
by injecting a uniform inflow at the boundary of a semi-infinite channel for a finite 
period of time. The propagation characteristics of these waves were then studied. 

In this paper, we shall present a numerical algorithm to study the generation and 
propagation of internal solitary waves along the interface of a two layered fluid. 
The waves are forced by a time dependent barotropic flow over an abrupt change 
in bottom topography. Our model differs from the previous ones in two important 
aspects: 1. It is forced continuously by a time dependent function; 2. It has incor- 
porated an arbitrary bottom topography. It is believed that the present study is 
among the first to investigate the generation, evolution, and propagation of solitary 
internal waves due to continuous forcing. Although the physical interpretation of 
the waves is of oceanographic origin, the method of solution is general. 

2. THE PHYSICAL MODEL 

An inviscid, incompressible, two-layer flow over topography (Fig. 1) is started 
from rest. In the state of rest, a thinner layer of fluid of constant depth y1 and 
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FIG. 1. The two-layered fluid system and step topography with smooth corner: T(X) = 
1/2[2I.O + 19.0 tanh(x/lO)]. 

density p lies over a deeper layer of constant density (p + Ap) and of variable 
p.Jx). The total depth of fluid is Y(X) =rl +r,(x). The system is forced by an 
arbitrary, time-dependent, barotropic flow. The flow remains irrotational and the 
basic equations are formulated in terms of velocity potentials in the two layers, 
together with the kinematic and dynamic interface conditions. Free surface effects 
are eliminated by assuming that it is covered with a 

Following the procedure used by Whitham [14 
velocity potentials are expanded about the hydrostatic solution to include vertical 
acceleration (dispersion) effects to the first order. The expansion in the varia 
depth lower layer satisfies the bottom boundary condition. The expa~sio~§ are 
substituted into the kinematic and dynamic interface conditions as in [143. 

If the water depth on the shelf is used as characteristic length, I,, V= 
dm as the characteristic velocity, and L/V as the characteristic time, g 
being the earth’s gravity, the dimensionless governing equations are [K!] 

as/at+ s aA/ax+ A as/ax+ aqdx- ajs%pyax= 0 
~ulat+aslax+caujax+uacjax-taokiahilaxfU2a 

-a(v2slr)lax-a3(b(X)u)laX2 at=0 
A( u, x; t) = q(t)/r(x) - (Yi - P*(X))/Y(X) ~ u 



170 QUON AND SANDSTROM 

B( u, x; t) = -q(t)/r(x) + Y1 . r&x)/r(x) . u- (3b) 

WY t) = q(t)/+) (3c) 

D(x) = @I -r,(x))/+) W) 

d(x) = rl .r2(x)/3. (3e) 

In (l)-(3), S(x, t) is the interfacial elevation, U(x, t) is the current shear defined as 
the difference between mean velocities in the lower and upper layer, respectively, 
and q(t) is the non-dimensional mass flux and is prescribed arbitrarily. 

Equation (1) is derived from continuity and is exact. It contains cubic non-linear 
terms. In Eq. (2), the dynamic interface condition, non-linear terms are again 
retained to third order, but dispersive terms only to first order. Hence the physical 
model consists of a pair of coupled non-linear and weakly dispersive third-order 
equations. 

If the amplitude of the forcing function, q(t), remains suitably small (hydrauli- 
cally sub-critical), the baroclinic disturbance originating at the abrupt change of 
topography propagates at finite speed towards x = &- co. The boundary conditions 
can then be chosen as S= U=O at (xl = co. 

* 3. THE NUMERICAL METHOD 

Evolution equations similar to (1) and (2) have been solved numerically with 
pseudospectral methods [S, 71, and with finite difference methods [3, 4, 10, 11, 15, 
161. A collection of the earlier methods can be found in [13]. In this paper, we 
shall describe a two and one-half step predictor-corrector finite difference method. 
The essence of the method is as follows: (a) At time step (n + l), we approximate 
S”+’ by S* explicitly; (b) compute U”+’ implicitly in terms of S*, S”, and U”; 
(c) correct S” + ’ in terms of U” + ‘, U”, and S”. This method is similar to that used 
in [ 111. Since our physical model is nondissipative and only mildly dispersive, it is 
very important to control the numerical dissipation and dispersion due to trunca- 
tion errors. If not, as we shall demonstrate later, they can distort severely the shape 
and propagation characteristics of these waves. We shall study these effects and 
propose procedures to control them. 

The procedure can be symbolically written as 

(as/at)* + s* axyax + AH asyx + air/ax 

-s* [2unlr . asyax + sn a( un/r)px] = 0 (4) 

(au/at),+112 + c*+I/~ au/ax”+ 112 + 2~un au/axn+1/2- (a3(d7yaX2 sty+ 112 
- 

= a[( uy2 S*lr]/ax - (a S/ax - un acn + l/2/aX - un)Z aDlax 

(as/at y + 112 + sn a,4/axn + 112 + A” + 112 as*jax + aBlaxn + “2 

-a[(Sa)2 i7n+l/2jr-ya~=0. 

(5) 

(f-5) 
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In these equations, S* approximates S”’ ‘, and (B/at)* = (S* - S”)/At approximates 
iaww nf1’2=(Sn+1-Sn)/At;fn+1/2=(fn+1+fn)/2 an F = (s* $ S”)/2, where 
n stands for the time step and the overbar stands for an averaging operation in 
time. 

The accuracy of the problems in which dispersion is important requir 
order approximation for the linear terms 
Further discussion on dispersion will be 
of the derivatives in the nonlinear terms s 
solutions warrants it. 

Equations (4) to (6) can be represented in the following finite difference form, 
with x=kAx. t=nAt: 

- 
(S,* - S”,)jAt + S,* D,A*/Ax+ A; D,Y/Ax + “/Ax 

-s,*[2U;/r, D,S”/Ax + S;: Dk(Un/r)/A~] = 0 V? 

(U “k+‘- U;)/At+ (2DkU;: + C”+‘i2).(U;;; - U;t.ll; + Un,+I - U”,_,)/(4Ax) 

-l/(AtAx’)[(a,_,U”,1:-2okU”,+“+o,+,U”,=f) 

-(~k-l~;-l-2~k~“,+~k+l~;:+1)1 

= -(l/Ax D,(S* + Sn)/2 - U;(C;;;/2 - C;::!“)/(2Ax) - (U;)j2 

.@),+I -D,-1 )/(2Ax) + l/Ax D,[( U”)2/~(S* + S”)/2] (81 

(3 it1 - S:)/At + S; Dk(An+l + A”)/@Ax) + (A;+ 1 + A;)/2. 

+ (l/Ax) D,(B”+’ +-B”)/2-(l/Ax).D,[(S”)2/r(Un+1iUn)/21=0. (9) 

En Eqs. (7), (g), and (9), (l/Ax) D,P” can be approximated by either one of 
the following two difference schemes which are accurate to O(Ax2) and O(Ax4) 
respectively: 

(l/Ax)D,P”=(l/Ax)~(P;:+,-Pi_,)/2 

= (apyax) + (4x2/6) ~ (a3Pyx3) + 

Scheme 111. 

(l/Ax)D,P”=(l/Ax)(P;:~,-8P;:p, +W;+, -P;+,)/E 

= (dPn/dx) + (Ax4/30). (i?Pn/ax’) + O(Ax’). 

We shall discuss the implication of the two different schemes below in the section 
on dispersion. 
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Equations (7) to (9) can be rearranged to give computational algorithm: 

(a) S*=(l+yD,A”-F;:)-’ [(l-YD,A”+P;)S; 

-2. y(A;: D,S” + DkBn)] (12) 

where FE = y[2U;/r D,S”+ S;: Dk(Un/r)]; 

where 

ak = y/2[2DkU; + c;+1’2] +c~,-,/AX~ 

b, = 1 + 2ok/Ax2 

c~=-~/~[~D~U;:+,C”~+~‘~]+B~+~/AX~ 

dk = [U;: - 1//2[2D, U; + C, * + 1’2] hk U” - l/Ax2 6$dJ”) 

-@k(S*+S”)-yU;6kC”+“2-y(U”)26kD 

f y Dk[(U”)2/r(S* + sn)] 

(c) s;+l= s;: - yS~D,(~“+‘+~“)- y(A;L+‘+&)DkS” 

--y Dk(BR+’ +B”)+ YD,[(S”)Z/r(Un+l+ u”)] (14) 

where skf = (fk+ 1 -fk-l)> 8f = (fk-1 -2fk +fk+lh Y =AU(~AX). 
In these equations, DkB” and DkS” are either from Scheme I in Eq. (lo), or 

Scheme II in Eq. (11). Equations (12) and (14) are explicit, and (13) is implicit. The 
latter requires the solution of an N x N linear system, where N is the number of grid 
points. Since this linear system has a tridiagonal coefficient matrix, its solution by 
Gaussian elimination can be done using only O(N) arithmetic operations. 

In the computation, we have used q(t) = Q. sin(2rct/200), and set a step-like 
topography at the origin of a one-dimensional infinite space, - co <x < co. If the 
computation is terminated before the waves reach the boundaries of a computa- 
tional domain so that no waves are permitted to reflect back into the interior to 
contaminate the forward propagating solutions, the boundary conditions can be set 
to either S = U = 0, or &S/ax = dU/ax = 0, or other combination of any two of them 
at any arbitrary distance 1x1 = 2. If the forcing lasts only for a short period, one 
can translate the x-axis linearly to allow the wave to propagate indefinitely within 
a limited computational domain after the forcing has stopped. This procedure is 
similar to solving the equations along their characteristics and can save a substan- 
tial amount of computing time. 
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4. THE STABILITY PROPERTIES 

Our experiments show that in the system under investigation, instability occurs 
some time after the initial pulse has been generated, presumably when the er- 
sive term of the equation becomes important. Dispersion takes effect very slowly. Its 
effects are visible only after the initial pulse has travelled some distance away fro 
the step topography. To avoid instability due to abrupt change in water dent 
the sharp corners are rounded by putting Y(X) = r. + rl tanh CXX. Choosing ad 1 
eliminates the topographic instability. We shall investigate the stability properties of 
the algorithm in a region where there is no topographic gradient, i.e., yI, p2, r3 and 
LT are considered to be constants, and X/ax = dDJax = 0. We shall also set A = aU 

= bU, a = (p2 - rl)/r and b = r1 .Y~/Y being constants, where P* and I can be 
es at either side of the step. With these ap~roximatiQ~s, we shall investigate 

owing model equations: - 
From (4) we obtain an expression for S* which is then linearized to give 

- 

ence 

S* = l/a(S” - At/2aU, &Y/ax-b At/DU”/dx). BlS) 

- 
as*lax = Ija(asyax - At/2aU, a2syaX2 - b dt/2aWlaX2j, 

where 

IX = el.0 + At/2a au,~ax-dt/2~u,~r as,jax+ so a(u,lryax)l 

The linearized forms of (5) and (6) are 
- au”+ 112 dun + 112 

(au/aty+1/2+ c, ax+ 2~~7, dx o~a(a2ulax2yat 

- 
= - as*/ax + U i/r as*/ax 

(asjaty + 112 4-a au,jaxs~ + aU, asn/ax 

+b 
dU” + l/2 
~ - 2s, U,/r asyax = 0. 

ax 

Note that we have obtained (16) and (17) by replacing U an S in (5) and ($j 
by U,, and SO, LIB/ax by bdU,/dx, and i?Apx by aau,jax. They represent some 

typical values of U, S, aB/ax, and aA/ax from the final solutions. We shall 
Scheme I for alax and substitute aS*/ax from (Isa) into (161, then analyze 
stability of the coupled equations (16) and (17). 

If we use central differencing for the derivatives and use Fourier representation 
for the grid point error, i.e., Uz = U” exp(ik Ax) and S; = S” exp(ik Ax), where 
i = J-1, then (aUn/ax), = i(llAx) . U” sink Ax I expjik Ax), (a2Un/ax2) = 
(2/4x2) . U”(cos k Ax - 1) . exp(ik Ax) = - U”[sin(Ax/2)/(Ax/2)j2 . exp(ik Ax), 
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where for brevity we have used U” and S” to represent their respective computa- 
tional error at the nth time step. With these substitutions, Eqs. (16) and (17) can 
be written in matrix form as 

PX *+l= QXn, X=(U, S)T, Cl& b) 

where T stands for the transpose, and P and Q are 2 x 2 matrices having elements: 

pll = Cl.0 + a[sin(Ax/2)/(Ax/2)]‘] 

+i[1/2.At/Ax.sin(Ax).(2D,U0 + C,)] 

p12 = 0.0 

p21 = i[b/2At/Ax sin(Ax)] 

p22 = 1.0 

qll = (1.0 + [o - At2b/(2cr)(l - Ui/r)] . [sin(Ax/2)/(Ax/2)12) 

-i[ 1/2At/Ax sin(Ax) . (20, U, + C,)] 

q12 = At2/(2a) aU,( Ui/r - 1). [sin(Ax/2)/(Ax/2)]’ 

+iAt/cr(Ui/r- l).sin(Ax)/Ax 

q21 = - i[b/2At/Ax sin(Ax)] 

q22 = (1.0 + a At c?U,,/ax) + i At sin(Ax)/Ax(2& U,,/r, -au,). 

For stability, we require \,?I < 1.0, 1 being the eigenvalues of P-‘Q. Before 
considering the general case, let us first consider the uncoupled equations, i.e., set 
the off-diagonal elements of P and Q equal to zero. Then the two eigenvalues are 

11 = q11lp11 

and 

a2 = 922. 

Obviously llzl 1 < 1.0 for small At. Thus the uncoupled, linearized Eq. (16) are 
unconditionally stable if we neglect the O(At2) terms, a well-known property of 
the implicit procedure. If we keep the O(At2) terms, we require At < 
(2clo/[b(l- U2/r)]) . ‘I2 The other condition 11,] < 1.0 requires 1.0 > At. C/Ax, 
where 

C = AX/~. [a auojax + (sin(Ax)/Ax. [2So U,/r - aUo])2/(a au,/ax)l. 

Hence the stability of the uncoupled form of Eq. (17) is governed by the CFL 
criterion of a wave equation with phase speed C. 
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In order to investigate the coupled equations, we rewrite (18) as 

X .+l=p-lQXE=G (19) 

where G is the amplification matrix of the coupled Eqs. (16) and (17). The elements 
of G are 

g11 = qlllPl1 

g12 = q12/Pll 

g21 = -P21 . qlllP11 + 921 

g22 = - P21 . q12lPll + q22 

and its eigenvalues satisfy the following characteristic equation 

kll - A)(g22 - 1) - g12 . g21 = 0 
or 

(411 -~P11)(P11 ‘q22 - P21 ‘412 -iPI,) 

-cl12(P11 ‘cl21 - P2! .411)=0. 

ne can readily obtain the two solutions of A, 

where 

;I= Wf [w2+zp2, 

w= (411 + Pll .922 - q21 .q12)/2 

z=(qll ‘PI1 ‘q22-911 ‘P21 ~~12-6?12’Pll ‘CI21 +C?21 ‘P21 ‘9ilJ 

Tf we neglect O(dt2) terms, we have the approximate solutions, 

Al J” + m20)-iidtnc, 
(1+m2a)+iAtncl (21aJ 

A2 = 
(1+m20)(l-c3At)+iAt[l+nc,(l+m20)] 

(1im20)+iAtnq 4 @lb) 

where 

m = sin(Ax/2)/(Ax/2) 

n = sin( Ax)/Ax 

Cl = co/2 + D, uo 

c2 = (1 - Ui/r)/a 

c3 =a au,jax 
c‘$ = (2S, u,/r - au,). 

581/86/l-12 
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FIG. 2. (a) Absolute eigenvalues of the matrix G as functions of At; So = -0.04281, X,/ax= 
-0.02414; U, = 0.09507; aU,/ax = 0.05238. These are values obtained from the leading wave in shallow 
water of the computation shown in Figs. 4a and b, with Q = 0.1 and dx = 0.5. These values are used in 
the coefficients of the linearized equations for stability analysis. (b) Absolute eigenvalues of the matrix 
G as function of At. The parameters used in the computation are the same as in Fig. 2a except Us = 0 
and aU,,/ax = 0. 

Note that m, n -+ 1 as Ax -+ 0. c2 is not in A1 and 1, because the term containing 
c2 is O(dt*). It is obvious that /Ai 1 = 1, and I& 1 < 1 if we neglect the O(dt’) terms. 

Therefore the linearized equations are stable if At is sufficiently small so that 
O(dr*) terms can be neglected. Ax is not a significant contributing factor to 
instability if, say, it is kept less than unity. However, it is difficult to put a bound 
on At because c1 to c4 are all interrelated to the solution of the problem. 

In Figs. 2a and 2b, we have plotted the eigenvalues as functions of At for given 
q, U,, So, aU,/ax, and &!&/ax which are obtained from a stable solution. The 
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FIG. 2-Continued 

eigenvalues of G are computed numerically by using the scientific libra 
ES]. It is clear that from Fig. 2a, 11, j is increasing and j& 1 is decreasing an 
are very close to unity up to At = 2.1 when /A, 1 becomes larger than unity. 
eigenvalues change gradually until At z 5.2, where they diverge abruptly. 
varied different parameters to see whether or not we can make the two ei 
to coalesce. This happens when U, and dUOlax are set equal to 0 as 

. When SO and &S’,,/dx are set equal to zero, the coalescence is not as complete 
(not shown). Numerical experiments for Q =&I, dx=O.5, show that At = 2.0 is 
about the minimum value of At at which the numerical system becomes unstable. In 
general, the At used is a great deal smaller than unity in order to maintain accuracy 
as discussed below. This scheme is therefore extremely robust. It is reassuring that 
we need not worry about instability when choosing At. We must, however, choose 
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At sufficiently small that dissipation will not overwhelm the solutions as we shall 
show in the next section. At At = 5.2, the eigenvalues diverge from each other 
abruptly. The precise reason for this abrupt divergence has not been established. 
We speculate that for such large values of At, terms containing At2 become domi- 
nant in (18) and consequently change the characteristics of the equations. 
However, such a large value of At is outside our interest here. 

Our discussion on instability in this section is highly simplified. We have assumed 
that the shelfbreak itself will not cause any computational difficulty, since we have 
set dr/dx= 0 everywhere for the instability analysis. This assumption is certainly 
true in our studies because we have designed the slope of the shelf to be of order 
unity, and the shelfhreak has rounded corners as shown below (also see Fig. 1). If 
the shelf is a true step function with right-angled corners, we may have a different 
kind of dominant instability limitation. 

5. DISSIPATION 

The scheme (12), (13), and (14) can be constructed so that they are non- 
dissipative. However, when we substitute (15a) into (16) for as*/ax, we introduce 
explicitly O(At) dissipative terms: At/2[aU d2S”/dx2 + b a2U”/ax2]. They are inde- 
pendent of Ax and are controllable. Their effects on S are indirect and hence are 
much more difficult to assess. We shall illustrate the results of numerical dissipation 
for a computation with At = 1.0, Q = 0.1, and Ax = 0.5. The forcing is applied for 
half a period. In Table I, column 1 shows the integrated energy over the left half 
plane, and column 2 shows that over the right half plane at 10 different forcing 
cycles. The sum of the two is shown in column 3. The dissipation has reduced the 
wave energy by about 20% over nine forcing cycles on the left half plane, while on 
the right in deep water, the waves are equilibrating slowly. Thus the dissipative 

TABLE I 

Energy with dt = 1.0 Half Cycle Forcing 

Forcing 
cycle EL E.Q EL +ER 

1 O.l277E-01 
2 O.l277E-01 
3 O.l279E-01 
4 O.l277E-01 
5 O.l25OE-01 
6 O.l206E-01 
7 0.1161G01 
8 O.l123E-01 
9 O.l089E-01 

10 O.l059E-01 

O.l247E-01 
O.l249E-01 
O.l253E-01 
0.1259&01 
O.l264E-01 
O.l269E-01 
O.l274E-01 
O.l279E-01 
O.l284E-01 
0.5112E-01 

0.2524E-01 
0.2526B01 
0.2532E-01 
0.25351%01 
0.2515E-01 
0.2475E-01 
0.2435E-01 
0.24OlE-01 
0.2373E-01 
O.l57OE-01 
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TABLE II 

Energy with At = 0.125 Half Cycle Forcing 

Forcing 
cycle EL ER EL +ER 

1 O.l279E-01 
2 0.1279&Y-01 
3 O.l282E-01 
4 O.l288E-01 
5 O.l294E-01 
6 O.l296E-01 
I O.l295E-01 
8 O.:293E-01 
9 0.1290&01 

10 O.l286E-01 

O.l247E-01 
O.l249E-01 
O.l252E-01 
O.l255E-01 
O.l258E-01 
0.126O.G01 
0.1261&01 
0.1262B01 
O.l263E-01 
0.5068E-01 

0.2526.E-01 
0.2528E-01 
0.2533&01 
0.2543&01 
0.2551E-01 
O.2555E-01 
0.2556I.G01 
0.2555.G01 
0.2553E-01 
O.l793E-01 

effects are different in shallow and deep waters. The reasons are as follows: t 
Cents a and 6 in the numerical dissipative terms in Eq. (15a) are ~ro~o~tiona~ to 
I/F. Hence they are larger in shallow water, where r is small, than that in deep 
water. Another effect is more indirect. Since the physical dispersion ~oe~~i~~t is 
proportional to r1 . rz, dispersion is larger in deep water than in shallow water. 
shall show later that within a wave train which contains a constant amoun 
energy, the larger the dispersion, the longer are the waves within the wave 
or the smaller the wave number, k. Since dissipation is proportion 
therefore larger in the shallow water. For comparison, we also give 
energy for a similar computation with At = 0.125 in Table III. As we 

ation is neghgibly small for At = 0.125, and .l. The energy has been 
ted from the formulae 

where 

E, = J” q(S, u, x) dx = ; r&T$ b>, Xi) Ax 
-2 j= -,J 

E, = 1” ?j(S, u, x) dx =y y(sj, hi,, x,) Ax, 
0 Q 

q(S, u, if = 1/2[S2+ (rr - S)(r, + 8)/r. U2 + ~/(3~)(~~ Y2 . XJ/o”x)“]. (22) 

The mtegrals over - 9 6 x < 9 are approximated by Simpson’s rule. 

6. DISPERSION 

spersion arises from derivatives of third order in x or rn t, or fr 
atives such as the term a3(oU)/at ax* in Eq. (2). In the finite 
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formulation of the equations, third-order derivatives can be inadvertently intro- 
duced as truncation errors in second-order approximations of the first-order 
derivatives. For example, the approximation of the time derivative, 

(f”” -j-ydt = (afyaty+ll2+ (dt2/24)(a3flat3)“+“2, 

introduces an 0(At2) numerical temporal dispersion. This can be eliminated only if 
we use a three- or multiple-leveled schemes, whose advantage, however, is not over- 
whelming [4]. In order to keep this numerical dispersion from contaminating the 
physical dispersion, we have to keep At small. In practice, the dissipative effect due 
to large At is much more worrisome than dispersion. Similarly, the approximation 
of the first order spatial derivatives, including those in the nonlinear terms, can also 
introduce numerical dispersion. For our computations, the nonlinear terms are 
sufficiently small that we need not worry about dispersion due to their truncation 
errors. On the other hand, linear terms aB/ax and aS/dx in Eqs. (1) and (2) need 
special treatment. While using Scheme I in Eq. (10) to approximate these terms will 
introduce an 0(dx2) dispersion terms, Scheme II in Eq. (11) gives only on U(Ax4) 
truncation error. 

In Figs. 3a and 3b, we compare the results of three separate computations with 
the combination of different At and Scheme I or II. In all these computations, the 
forcing function q(t)=O.l sin(2rct/200) for O< t < 100, q(t) =0 for t > 100, and 
Ax = 0.5 are used. The solid dots in Fig. 3 represent the analytical solitary wave 
solution which satisfies Eqs. (1) and (2) when q(t) = 0 and r(x) = constant. The 
leading waves of the numerical solutions are expected to be accurately represented 
by this solution. 

Curves 1 in Figs. 3a and b use At = 0.125 and Scheme II for all the spatial 
derivatives denoted by D, in Eqs. (7), (8), and (9). These curves are very accurate 
when compared with the theoretical values (solid dots). It seems that At = 0.125 is 
sufficiently small to suppress numerical dissipation and dispersion for this computa- 
tion. The discrepancy between theory and computation at the trailing edge of curve 
1 shown in Fig. 3a is due to the influence of the wave following directly behind. It 
is expected that at large time when the leading wave has separated from the rest of 
the wave train, the analytical and numerical solutions will agree even better. 

Curve 2 in Fig. 3a uses Scheme I for the linear terms aB/ax and as/ax, and 
At = 0.125. Curve 2 is significantly wider than curve 1. In fact the former fits a 
solitary wave for a substantially different dispersion coefficient, 0. If we consider a 
solitary wave of the form sech2[k(x - ct)], then 0 is proportional to l/(k2). Fitting 
curve 2 into this wave form gives k = 0.4 instead of the correct value k = 0.6, which 
is the appropriate value for curve 1. Thus using Scheme I for the linear terms has 
increased the effective dispersion by a factor of more than 2. 

Curve 3, which uses Scheme II for D, and At = 1.0, represents the solution at the 
same evolutionary time as curves 1 and 2. Curve 4 is the same wave live forcing 
cycles earlier. Note the significant reduction in amplitude and in width in curve 3 
when compared with curve 1. The reduction in amplitude is due to the increase in 
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FIG. 3. (a) Comparison of the elevation S of the leading wave in the solitary wave train in the 
shallow water. Curve 1 is for At = 0.125, all first order spatial derivatives being represented by Scheme II. 
Curve 2 is for a model whose parameters are the same as those for curve I except the iinear terms in 
Eqs. (6), (7), and (8) are approximated with Scheme I. Curve 3 is for dr = 1.0. Other parameters are the 
same as curve 1. Curves 1, 2, and 3 represent the leading wave at the end of the 10th forcing period. 
Curve 4 is at the end of the 5th period for AC = 1.0, or it represents the same wave as curve 3 at an earlier 
time. (b,) Comparison of the leading wave of the solitary wave train in deep water at the end of the 9th 
forcing period. See the caption of Fig. 3a for details. 
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FIG. 4. (a) The elevation S of solitary wave trains computed with Scheme II; At=0.125, AxzO.5. 
Forcing function q(t) = 0.1 sin(2nr/200) for t < 100, and q(t) = 0 for t > 100. Note the differences in wave 
forms and phase speeds in both the shallow and in deep water. The curves are plotted with a separation 
of 1 forcing period, from period 1 to 10. The time progresses from the bottom to the top graph. The 
ordinate scale is the true scale for the displacement of S. Each curve should start from zero in the 
ordinate. (b) The shear U of the solitary wave trains. See caption of Fig. 4a for details of explanation. 

dissipation for large At, and the reduction in width is due to decrease in dispersion 
(opposite to curve 2). In Fig. 3b, all curves are bundled together much closer than 
those in Fig. 3a. This shows that in deep water, the effects of the truncation errors 
are less severe. 

We can conclude from these comparisons that: (1) numerical dissipation due to 
large At has reduced the wave amplitude by more than 20% as shown in the 
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FIG. 4-Continued 

difference between curve 3 and curve 2; (ii) the numerical dispersion 
#S/at3 truncation term works in the opposite direction of the spatial 
dispersion as shown in curve 2 (excessive spatial dispersion) and curve 3 (e~~~ss~v~ 
temporal dispersion, opposite in sign); and (iii) in deep water as shown in Fig. 3b, 
numerical dissipation and dispersion are much less severe than in shallow water. 
Numerical experiments have also shown that using Scheme I for the ~o~~~~~a~ 
terms does not change the solutions appreciably. Furthermore, second-order spatial 
pproximations for the first-order derivatives in an implicit scheme as in E 
oes not affect the solutions very much, presumably because solutions obtained 

from an implicit scheme are spatially more consistent with the equation 
from an explicit scheme. Thus the effects of the truncation errors are re 
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FIG. 5. (a) The elevation S of a solitary wave train with continuous forcing, q(t) = 0.1 sin(2nt/200) 

for t > 0. For details explanation see caption of Fig. 4a. (b) The shear U of a solitary wave train with 
continuous forcing. For details see captions of Figs. 5a and 4a. 

7. SAMPLE RESULTS 

We shall present the results of two sample computations here. Both computations 
are for At = 0.125, Ax = 0.5, rl = 0.25, Y(X) = clO.5 + 9.5 tanh(x/lO)]. Therefore Y(X) 
is a step function at x = 0 with rounded corners as shown in Fig. 1; T(X) -+ 1.0 as 
x -+ - cc and Y(X) + 20.0 as x -+ co. The e-folding distance for the rounded corners 
is 10.0 nondimensional spatial units from the shelfbreak, and the slope is O(1) at 
x = 0. The forcing of the two cases are q(t) = Q. sin(2nt/200), with Q = 0.1. Thus 
the cyclic forcing has a period of 200 nondimensional time units, or 1600 time steps. 
For case 1, the forcing is q(t) for 0 < t < 100, and zero for t > 100. Therefore, the 
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FIG. 5-Continued 

forcing lasts for one-half of a cycle. Case 2 has a continuous forcing, q(l), for t> 
Computations are stopped after 10 complete periods, or after a no~dime~s~o~a~ 
time lapse of 2000 units. 

Figures 4a and b show the amplitude S and shear U of case 1 with sinusoidal 
forcing for half a period. Figures 5a and b show tbose of case 2 with cant 
periodic forcing. The waves propagate away from the center to both the left 
right direction. The time lapse between each horizontal line is one period of forcing 
time. The time progresses from bottom to the top. The total horizontal distance is 
4000 Ax or 2000 dimensionless units (recall that the depth of the shelf is unity). 

The difference between the wave forms on either side of the step arises from the 
difference in the total water depth. As a result, the dispersion in the deep water side 
is 19.151.75 c 26.33 times as large as that on the shelf. Note that the top lines show 
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that the wave trains on the right have hit the boundary. This is reflected in the 
energies in Tables I and II. 

There are also differences between the waves in Fig. 5 and those in Fig. 4 at any 
distance from the shelf break. This is mainly due to the nonzero background flow 
q(t) for case 2 in Fig. 5. These differences can be explained theoretically as given in 
a sequel paper [12]. 

8. DISCUSSION 

The finite difference scheme we have presented in this paper is very robust. 
Although the spectral method is more accurate [5, 61, the finite difference method 
is much simpler to use, especially when we introduce arbitrary topography and 
irregular time dependent forcing obtained from observation in the future. It is this 
versatility that prompted us to choose this avenue of investigation. We have found 
that the spatial numerical dispersion must be properly controlled by using higher 
order approximation for the first-order spatial derivatives. The O(dt) dissipation is 
inherent in this scheme and cannot be eliminated. We have also found that 
At = O(O.l) is sufliciently small to give accurate numerical results in our computa- 
tions. An alternative method to represent accurately the first- and second-order 
spatial derivatives is by using cubic spline [ 1,2]. This procedure is, however, 
more complicated than the method we have described here and is presently under 
investigation. 
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